sklearn.decomposition.NMF¶
- 
class sklearn.decomposition.NMF(n_components=None, init=None, solver='cd', tol=0.0001, max_iter=200, random_state=None, alpha=0.0, l1_ratio=0.0, verbose=0, shuffle=False, nls_max_iter=2000, sparseness=None, beta=1, eta=0.1)[源代码]¶
- Non-Negative Matrix Factorization (NMF) - Find two non-negative matrices (W, H) whose product approximates the non- negative matrix X. This factorization can be used for example for dimensionality reduction, source separation or topic extraction. - The objective function is: - 0.5 * ||X - WH||_Fro^2 + alpha * l1_ratio * ||vec(W)||_1 + alpha * l1_ratio * ||vec(H)||_1 + 0.5 * alpha * (1 - l1_ratio) * ||W||_Fro^2 + 0.5 * alpha * (1 - l1_ratio) * ||H||_Fro^2 - Where: - ||A||_Fro^2 = \sum_{i,j} A_{ij}^2 (Frobenius norm) ||vec(A)||_1 = \sum_{i,j} abs(A_{ij}) (Elementwise L1 norm)- The objective function is minimized with an alternating minimization of W and H. - Read more in the User Guide. - Parameters: - n_components : int or None - Number of components, if n_components is not set all features are kept. - init : ‘random’ | ‘nndsvd’ | ‘nndsvda’ | ‘nndsvdar’ | ‘custom’ - Method used to initialize the procedure. Default: ‘nndsvdar’ if n_components < n_features, otherwise random. Valid options: - ‘random’: non-negative random matrices, scaled with:
- sqrt(X.mean() / n_components) 
 
- ‘nndsvd’: Nonnegative Double Singular Value Decomposition (NNDSVD)
- initialization (better for sparseness) 
 
- ‘nndsvda’: NNDSVD with zeros filled with the average of X
- (better when sparsity is not desired) 
 
- ‘nndsvdar’: NNDSVD with zeros filled with small random values
- (generally faster, less accurate alternative to NNDSVDa for when sparsity is not desired) 
 
- ‘custom’: use custom matrices W and H 
 - solver : ‘pg’ | ‘cd’ - Numerical solver to use: ‘pg’ is a Projected Gradient solver (deprecated). ‘cd’ is a Coordinate Descent solver (recommended). - 0.17 新版功能: Coordinate Descent solver. - 在 0.17 版更改: Deprecated Projected Gradient solver. - tol : double, default: 1e-4 - Tolerance value used in stopping conditions. - max_iter : integer, default: 200 - Number of iterations to compute. - random_state : integer seed, RandomState instance, or None (default) - Random number generator seed control. - alpha : double, default: 0. - Constant that multiplies the regularization terms. Set it to zero to have no regularization. - 0.17 新版功能: alpha used in the Coordinate Descent solver. - l1_ratio : double, default: 0. - The regularization mixing parameter, with 0 <= l1_ratio <= 1. For l1_ratio = 0 the penalty is an elementwise L2 penalty (aka Frobenius Norm). For l1_ratio = 1 it is an elementwise L1 penalty. For 0 < l1_ratio < 1, the penalty is a combination of L1 and L2. - 0.17 新版功能: Regularization parameter l1_ratio used in the Coordinate Descent solver. - shuffle : boolean, default: False - If true, randomize the order of coordinates in the CD solver. - 0.17 新版功能: shuffle parameter used in the Coordinate Descent solver. - nls_max_iter : integer, default: 2000 - Number of iterations in NLS subproblem. Used only in the deprecated ‘pg’ solver. - 在 0.17 版更改: Deprecated Projected Gradient solver. Use Coordinate Descent solver instead. - sparseness : ‘data’ | ‘components’ | None, default: None - Where to enforce sparsity in the model. Used only in the deprecated ‘pg’ solver. - 在 0.17 版更改: Deprecated Projected Gradient solver. Use Coordinate Descent solver instead. - beta : double, default: 1 - Degree of sparseness, if sparseness is not None. Larger values mean more sparseness. Used only in the deprecated ‘pg’ solver. - 在 0.17 版更改: Deprecated Projected Gradient solver. Use Coordinate Descent solver instead. - eta : double, default: 0.1 - Degree of correctness to maintain, if sparsity is not None. Smaller values mean larger error. Used only in the deprecated ‘pg’ solver. - 在 0.17 版更改: Deprecated Projected Gradient solver. Use Coordinate Descent solver instead. - Attributes: - components_ : array, [n_components, n_features] - Non-negative components of the data. - reconstruction_err_ : number - Frobenius norm of the matrix difference between the training data and the reconstructed data from the fit produced by the model. - || X - WH ||_2- n_iter_ : int - Actual number of iterations. - References - C.-J. Lin. Projected gradient methods for non-negative matrix factorization. Neural Computation, 19(2007), 2756-2779. http://www.csie.ntu.edu.tw/~cjlin/nmf/ - Cichocki, Andrzej, and P. H. A. N. Anh-Huy. “Fast local algorithms for large scale nonnegative matrix and tensor factorizations.” IEICE transactions on fundamentals of electronics, communications and computer sciences 92.3: 708-721, 2009. - Examples - >>> import numpy as np >>> X = np.array([[1,1], [2, 1], [3, 1.2], [4, 1], [5, 0.8], [6, 1]]) >>> from sklearn.decomposition import NMF >>> model = NMF(n_components=2, init='random', random_state=0) >>> model.fit(X) NMF(alpha=0.0, beta=1, eta=0.1, init='random', l1_ratio=0.0, max_iter=200, n_components=2, nls_max_iter=2000, random_state=0, shuffle=False, solver='cd', sparseness=None, tol=0.0001, verbose=0) - >>> model.components_ array([[ 2.09783018, 0.30560234], [ 2.13443044, 2.13171694]]) >>> model.reconstruction_err_ 0.00115993... - Methods - fit(X[, y])- Learn a NMF model for the data X. - fit_transform(X[, y, W, H])- Learn a NMF model for the data X and returns the transformed data. - get_params([deep])- Get parameters for this estimator. - set_params(**params)- Set the parameters of this estimator. - transform(X)- Transform the data X according to the fitted NMF model - 
__init__(n_components=None, init=None, solver='cd', tol=0.0001, max_iter=200, random_state=None, alpha=0.0, l1_ratio=0.0, verbose=0, shuffle=False, nls_max_iter=2000, sparseness=None, beta=1, eta=0.1)[源代码]¶
 - 
fit(X, y=None, **params)[源代码]¶
- Learn a NMF model for the data X. - Parameters: - X: {array-like, sparse matrix}, shape (n_samples, n_features) : - Data matrix to be decomposed - Returns: - self : - Attributes: - components_ : array-like, shape (n_components, n_features) - Factorization matrix, sometimes called ‘dictionary’. - n_iter_ : int - Actual number of iterations for the transform. 
 - 
fit_transform(X, y=None, W=None, H=None)[源代码]¶
- Learn a NMF model for the data X and returns the transformed data. - This is more efficient than calling fit followed by transform. - Parameters: - X: {array-like, sparse matrix}, shape (n_samples, n_features) : - Data matrix to be decomposed - W : array-like, shape (n_samples, n_components) - If init=’custom’, it is used as initial guess for the solution. - H : array-like, shape (n_components, n_features) - If init=’custom’, it is used as initial guess for the solution. - Returns: - W: array, shape (n_samples, n_components) : - Transformed data. - Attributes: - components_ : array-like, shape (n_components, n_features) - Factorization matrix, sometimes called ‘dictionary’. - n_iter_ : int - Actual number of iterations for the transform. 
 - 
get_params(deep=True)[源代码]¶
- Get parameters for this estimator. - Parameters: - deep: boolean, optional : - If True, will return the parameters for this estimator and contained subobjects that are estimators. - Returns: - params : mapping of string to any - Parameter names mapped to their values. 
 - 
set_params(**params)[源代码]¶
- Set the parameters of this estimator. - The method works on simple estimators as well as on nested objects (such as pipelines). The former have parameters of the form - <component>__<parameter>so that it’s possible to update each component of a nested object.- Returns: - self : 
 - 
transform(X)[源代码]¶
- Transform the data X according to the fitted NMF model - Parameters: - X: {array-like, sparse matrix}, shape (n_samples, n_features) : - Data matrix to be transformed by the model - Returns: - W: array, shape (n_samples, n_components) : - Transformed data - Attributes: - n_iter_ : int - Actual number of iterations for the transform. 
 
 
         

