sklearn.decomposition.SparseCoder¶
- 
class sklearn.decomposition.SparseCoder(dictionary, transform_algorithm='omp', transform_n_nonzero_coefs=None, transform_alpha=None, split_sign=False, n_jobs=1)[源代码]¶
- Sparse coding - Finds a sparse representation of data against a fixed, precomputed dictionary. - Each row of the result is the solution to a sparse coding problem. The goal is to find a sparse array code such that: - X ~= code * dictionary - Read more in the User Guide. - Parameters: - dictionary : array, [n_components, n_features] - The dictionary atoms used for sparse coding. Lines are assumed to be normalized to unit norm. - transform_algorithm : {‘lasso_lars’, ‘lasso_cd’, ‘lars’, ‘omp’, ‘threshold’} - Algorithm used to transform the data: lars: uses the least angle regression method (linear_model.lars_path) lasso_lars: uses Lars to compute the Lasso solution lasso_cd: uses the coordinate descent method to compute the Lasso solution (linear_model.Lasso). lasso_lars will be faster if the estimated components are sparse. omp: uses orthogonal matching pursuit to estimate the sparse solution threshold: squashes to zero all coefficients less than alpha from the projection - dictionary * X'- transform_n_nonzero_coefs : int, - 0.1 * n_featuresby default- Number of nonzero coefficients to target in each column of the solution. This is only used by algorithm=’lars’ and algorithm=’omp’ and is overridden by alpha in the omp case. - transform_alpha : float, 1. by default - If algorithm=’lasso_lars’ or algorithm=’lasso_cd’, alpha is the penalty applied to the L1 norm. If algorithm=’threshold’, alpha is the absolute value of the threshold below which coefficients will be squashed to zero. If algorithm=’omp’, alpha is the tolerance parameter: the value of the reconstruction error targeted. In this case, it overrides n_nonzero_coefs. - split_sign : bool, False by default - Whether to split the sparse feature vector into the concatenation of its negative part and its positive part. This can improve the performance of downstream classifiers. - n_jobs : int, - number of parallel jobs to run - Attributes: - components_ : array, [n_components, n_features] - The unchanged dictionary atoms - Methods - fit(X[, y])- Do nothing and return the estimator unchanged - fit_transform(X[, y])- Fit to data, then transform it. - get_params([deep])- Get parameters for this estimator. - set_params(**params)- Set the parameters of this estimator. - transform(X[, y])- Encode the data as a sparse combination of the dictionary atoms. - 
__init__(dictionary, transform_algorithm='omp', transform_n_nonzero_coefs=None, transform_alpha=None, split_sign=False, n_jobs=1)[源代码]¶
 - 
fit(X, y=None)[源代码]¶
- Do nothing and return the estimator unchanged - This method is just there to implement the usual API and hence work in pipelines. 
 - 
fit_transform(X, y=None, **fit_params)[源代码]¶
- Fit to data, then transform it. - Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X. - Parameters: - X : numpy array of shape [n_samples, n_features] - Training set. - y : numpy array of shape [n_samples] - Target values. - Returns: - X_new : numpy array of shape [n_samples, n_features_new] - Transformed array. 
 - 
get_params(deep=True)[源代码]¶
- Get parameters for this estimator. - Parameters: - deep: boolean, optional : - If True, will return the parameters for this estimator and contained subobjects that are estimators. - Returns: - params : mapping of string to any - Parameter names mapped to their values. 
 - 
set_params(**params)[源代码]¶
- Set the parameters of this estimator. - The method works on simple estimators as well as on nested objects (such as pipelines). The former have parameters of the form - <component>__<parameter>so that it’s possible to update each component of a nested object.- Returns: - self : 
 - 
transform(X, y=None)[源代码]¶
- Encode the data as a sparse combination of the dictionary atoms. - Coding method is determined by the object parameter transform_algorithm. - Parameters: - X : array of shape (n_samples, n_features) - Test data to be transformed, must have the same number of features as the data used to train the model. - Returns: - X_new : array, shape (n_samples, n_components) - Transformed data 
 
- 
 
         
