sklearn.gaussian_process.correlation_models.generalized_exponential¶
- 
sklearn.gaussian_process.correlation_models.generalized_exponential(theta, d)[源代码]¶
- Generalized exponential correlation model. (Useful when one does not know the smoothness of the function to be predicted.): - n theta, d --> r(theta, d) = exp( sum - theta_i * |d_i|^p ) i = 1- Parameters: - theta : array_like - An array with shape 1+1 (isotropic) or n+1 (anisotropic) giving the autocorrelation parameter(s) (theta, p). - d : array_like - An array with shape (n_eval, n_features) giving the componentwise distances between locations x and x’ at which the correlation model should be evaluated. - Returns: - r : array_like - An array with shape (n_eval, ) with the values of the autocorrelation model. 
 
        