sklearn.isotonic.IsotonicRegression¶
- 
class sklearn.isotonic.IsotonicRegression(y_min=None, y_max=None, increasing=True, out_of_bounds='nan')[源代码]¶
- Isotonic regression model. - The isotonic regression optimization problem is defined by: - min sum w_i (y[i] - y_[i]) ** 2 subject to y_[i] <= y_[j] whenever X[i] <= X[j] and min(y_) = y_min, max(y_) = y_max - where:
- y[i]are inputs (real numbers)
- y_[i]are fitted
- Xspecifies the order. If- Xis non-decreasing then- y_is non-decreasing.
- w[i]are optional strictly positive weights (default to 1.0)
 
 - Read more in the User Guide. - Parameters: - y_min : optional, default: None - If not None, set the lowest value of the fit to y_min. - y_max : optional, default: None - If not None, set the highest value of the fit to y_max. - increasing : boolean or string, optional, default: True - If boolean, whether or not to fit the isotonic regression with y increasing or decreasing. - The string value “auto” determines whether y should increase or decrease based on the Spearman correlation estimate’s sign. - out_of_bounds : string, optional, default: “nan” - The - out_of_boundsparameter handles how x-values outside of the training domain are handled. When set to “nan”, predicted y-values will be NaN. When set to “clip”, predicted y-values will be set to the value corresponding to the nearest train interval endpoint. When set to “raise”, allow- interp1dto throw ValueError.- Attributes: - X_ : ndarray (n_samples, ) - A copy of the input X. - y_ : ndarray (n_samples, ) - Isotonic fit of y. - X_min_ : float - Minimum value of input array X_ for left bound. - X_max_ : float - Maximum value of input array X_ for right bound. - f_ : function - The stepwise interpolating function that covers the domain X_. - Notes - Ties are broken using the secondary method from Leeuw, 1977. - References - Isotonic Median Regression: A Linear Programming Approach Nilotpal Chakravarti Mathematics of Operations Research Vol. 14, No. 2 (May, 1989), pp. 303-308 - Isotone Optimization in R : Pool-Adjacent-Violators Algorithm (PAVA) and Active Set Methods Leeuw, Hornik, Mair Journal of Statistical Software 2009 - Correctness of Kruskal’s algorithms for monotone regression with ties Leeuw, Psychometrica, 1977 - Methods - fit(X, y[, sample_weight])- Fit the model using X, y as training data. - fit_transform(X[, y])- Fit to data, then transform it. - get_params([deep])- Get parameters for this estimator. - predict(T)- Predict new data by linear interpolation. - score(X, y[, sample_weight])- Returns the coefficient of determination R^2 of the prediction. - set_params(**params)- Set the parameters of this estimator. - transform(T)- Transform new data by linear interpolation - 
fit(X, y, sample_weight=None)[源代码]¶
- Fit the model using X, y as training data. - Parameters: - X : array-like, shape=(n_samples,) - Training data. - y : array-like, shape=(n_samples,) - Training target. - sample_weight : array-like, shape=(n_samples,), optional, default: None - Weights. If set to None, all weights will be set to 1 (equal weights). - Returns: - self : object - Returns an instance of self. - Notes - X is stored for future use, as transform needs X to interpolate new input data. 
 - 
fit_transform(X, y=None, **fit_params)[源代码]¶
- Fit to data, then transform it. - Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X. - Parameters: - X : numpy array of shape [n_samples, n_features] - Training set. - y : numpy array of shape [n_samples] - Target values. - Returns: - X_new : numpy array of shape [n_samples, n_features_new] - Transformed array. 
 - 
get_params(deep=True)[源代码]¶
- Get parameters for this estimator. - Parameters: - deep: boolean, optional : - If True, will return the parameters for this estimator and contained subobjects that are estimators. - Returns: - params : mapping of string to any - Parameter names mapped to their values. 
 - 
predict(T)[源代码]¶
- Predict new data by linear interpolation. - Parameters: - T : array-like, shape=(n_samples,) - Data to transform. - Returns: - T_ : array, shape=(n_samples,) - Transformed data. 
 - 
score(X, y, sample_weight=None)[源代码]¶
- Returns the coefficient of determination R^2 of the prediction. - The coefficient R^2 is defined as (1 - u/v), where u is the regression sum of squares ((y_true - y_pred) ** 2).sum() and v is the residual sum of squares ((y_true - y_true.mean()) ** 2).sum(). Best possible score is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0. - Parameters: - X : array-like, shape = (n_samples, n_features) - Test samples. - y : array-like, shape = (n_samples) or (n_samples, n_outputs) - True values for X. - sample_weight : array-like, shape = [n_samples], optional - Sample weights. - Returns: - score : float - R^2 of self.predict(X) wrt. y. 
 
 
         
