sklearn.linear_model.BayesianRidge¶
- 
class sklearn.linear_model.BayesianRidge(n_iter=300, tol=0.001, alpha_1=1e-06, alpha_2=1e-06, lambda_1=1e-06, lambda_2=1e-06, compute_score=False, fit_intercept=True, normalize=False, copy_X=True, verbose=False)[源代码]¶
- Bayesian ridge regression - Fit a Bayesian ridge model and optimize the regularization parameters lambda (precision of the weights) and alpha (precision of the noise). - Read more in the User Guide. - Parameters: - n_iter : int, optional - Maximum number of iterations. Default is 300. - tol : float, optional - Stop the algorithm if w has converged. Default is 1.e-3. - alpha_1 : float, optional - Hyper-parameter : shape parameter for the Gamma distribution prior over the alpha parameter. Default is 1.e-6 - alpha_2 : float, optional - Hyper-parameter : inverse scale parameter (rate parameter) for the Gamma distribution prior over the alpha parameter. Default is 1.e-6. - lambda_1 : float, optional - Hyper-parameter : shape parameter for the Gamma distribution prior over the lambda parameter. Default is 1.e-6. - lambda_2 : float, optional - Hyper-parameter : inverse scale parameter (rate parameter) for the Gamma distribution prior over the lambda parameter. Default is 1.e-6 - compute_score : boolean, optional - If True, compute the objective function at each step of the model. Default is False - fit_intercept : boolean, optional - whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). Default is True. - normalize : boolean, optional, default False - If True, the regressors X will be normalized before regression. - copy_X : boolean, optional, default True - If True, X will be copied; else, it may be overwritten. - verbose : boolean, optional, default False - Verbose mode when fitting the model. - Attributes: - coef_ : array, shape = (n_features) - Coefficients of the regression model (mean of distribution) - alpha_ : float - estimated precision of the noise. - lambda_ : array, shape = (n_features) - estimated precisions of the weights. - scores_ : float - if computed, value of the objective function (to be maximized) - Notes - See examples/linear_model/plot_bayesian_ridge.py for an example. - Examples - >>> from sklearn import linear_model >>> clf = linear_model.BayesianRidge() >>> clf.fit([[0,0], [1, 1], [2, 2]], [0, 1, 2]) ... BayesianRidge(alpha_1=1e-06, alpha_2=1e-06, compute_score=False, copy_X=True, fit_intercept=True, lambda_1=1e-06, lambda_2=1e-06, n_iter=300, normalize=False, tol=0.001, verbose=False) >>> clf.predict([[1, 1]]) array([ 1.]) - Methods - decision_function(*args, **kwargs)- DEPRECATED: and will be removed in 0.19. - fit(X, y)- Fit the model - get_params([deep])- Get parameters for this estimator. - predict(X)- Predict using the linear model - score(X, y[, sample_weight])- Returns the coefficient of determination R^2 of the prediction. - set_params(**params)- Set the parameters of this estimator. - 
__init__(n_iter=300, tol=0.001, alpha_1=1e-06, alpha_2=1e-06, lambda_1=1e-06, lambda_2=1e-06, compute_score=False, fit_intercept=True, normalize=False, copy_X=True, verbose=False)[源代码]¶
 - 
decision_function(*args, **kwargs)[源代码]¶
- DEPRECATED: and will be removed in 0.19. - Decision function of the linear model. - Parameters: - X : {array-like, sparse matrix}, shape = (n_samples, n_features) - Samples. - Returns: - C : array, shape = (n_samples,) - Returns predicted values. 
 - 
fit(X, y)[源代码]¶
- Fit the model - Parameters: - X : numpy array of shape [n_samples,n_features] - Training data - y : numpy array of shape [n_samples] - Target values - Returns: - self : returns an instance of self. 
 - 
get_params(deep=True)[源代码]¶
- Get parameters for this estimator. - Parameters: - deep: boolean, optional : - If True, will return the parameters for this estimator and contained subobjects that are estimators. - Returns: - params : mapping of string to any - Parameter names mapped to their values. 
 - 
predict(X)[源代码]¶
- Predict using the linear model - Parameters: - X : {array-like, sparse matrix}, shape = (n_samples, n_features) - Samples. - Returns: - C : array, shape = (n_samples,) - Returns predicted values. 
 - 
score(X, y, sample_weight=None)[源代码]¶
- Returns the coefficient of determination R^2 of the prediction. - The coefficient R^2 is defined as (1 - u/v), where u is the regression sum of squares ((y_true - y_pred) ** 2).sum() and v is the residual sum of squares ((y_true - y_true.mean()) ** 2).sum(). Best possible score is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0. - Parameters: - X : array-like, shape = (n_samples, n_features) - Test samples. - y : array-like, shape = (n_samples) or (n_samples, n_outputs) - True values for X. - sample_weight : array-like, shape = [n_samples], optional - Sample weights. - Returns: - score : float - R^2 of self.predict(X) wrt. y. 
 
- 
 
         

