sklearn.linear_model.lasso_stability_path¶
- 
sklearn.linear_model.lasso_stability_path(X, y, scaling=0.5, random_state=None, n_resampling=200, n_grid=100, sample_fraction=0.75, eps=8.8817841970012523e-16, n_jobs=1, verbose=False)[源代码]¶
- Stabiliy path based on randomized Lasso estimates - Read more in the User Guide. - Parameters: - X : array-like, shape = [n_samples, n_features] - training data. - y : array-like, shape = [n_samples] - target values. - scaling : float, optional, default=0.5 - The alpha parameter in the stability selection article used to randomly scale the features. Should be between 0 and 1. - random_state : integer or numpy.random.RandomState, optional - The generator used to randomize the design. - n_resampling : int, optional, default=200 - Number of randomized models. - n_grid : int, optional, default=100 - Number of grid points. The path is linearly reinterpolated on a grid between 0 and 1 before computing the scores. - sample_fraction : float, optional, default=0.75 - The fraction of samples to be used in each randomized design. Should be between 0 and 1. If 1, all samples are used. - eps : float, optional - Smallest value of alpha / alpha_max considered - n_jobs : integer, optional - Number of CPUs to use during the resampling. If ‘-1’, use all the CPUs - verbose : boolean or integer, optional - Sets the verbosity amount - Returns: - alphas_grid : array, shape ~ [n_grid] - The grid points between 0 and 1: alpha/alpha_max - scores_path : array, shape = [n_features, n_grid] - The scores for each feature along the path. - Notes - See examples/linear_model/plot_sparse_recovery.py for an example. 
 
         
