sklearn.preprocessing.KernelCenterer¶
- 
class sklearn.preprocessing.KernelCenterer[源代码]¶
- Center a kernel matrix - Let K(x, z) be a kernel defined by phi(x)^T phi(z), where phi is a function mapping x to a Hilbert space. KernelCenterer centers (i.e., normalize to have zero mean) the data without explicitly computing phi(x). It is equivalent to centering phi(x) with sklearn.preprocessing.StandardScaler(with_std=False). - Read more in the User Guide. - Methods - fit(K[, y])- Fit KernelCenterer - fit_transform(X[, y])- Fit to data, then transform it. - get_params([deep])- Get parameters for this estimator. - set_params(**params)- Set the parameters of this estimator. - transform(K[, y, copy])- Center kernel matrix. - 
__init__()¶
- Initialize self. See help(type(self)) for accurate signature. 
 - 
fit(K, y=None)[源代码]¶
- Fit KernelCenterer - Parameters: - K : numpy array of shape [n_samples, n_samples] - Kernel matrix. - Returns: - self : returns an instance of self. 
 - 
fit_transform(X, y=None, **fit_params)[源代码]¶
- Fit to data, then transform it. - Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X. - Parameters: - X : numpy array of shape [n_samples, n_features] - Training set. - y : numpy array of shape [n_samples] - Target values. - Returns: - X_new : numpy array of shape [n_samples, n_features_new] - Transformed array. 
 - 
get_params(deep=True)[源代码]¶
- Get parameters for this estimator. - Parameters: - deep: boolean, optional : - If True, will return the parameters for this estimator and contained subobjects that are estimators. - Returns: - params : mapping of string to any - Parameter names mapped to their values. 
 
- 
 
        