sklearn.random_projection.GaussianRandomProjection¶
- 
class sklearn.random_projection.GaussianRandomProjection(n_components='auto', eps=0.1, random_state=None)[源代码]¶
- Reduce dimensionality through Gaussian random projection - The components of the random matrix are drawn from N(0, 1 / n_components). - Read more in the User Guide. - Parameters: - n_components : int or ‘auto’, optional (default = ‘auto’) - Dimensionality of the target projection space. - n_components can be automatically adjusted according to the number of samples in the dataset and the bound given by the Johnson-Lindenstrauss lemma. In that case the quality of the embedding is controlled by the - epsparameter.- It should be noted that Johnson-Lindenstrauss lemma can yield very conservative estimated of the required number of components as it makes no assumption on the structure of the dataset. - eps : strictly positive float, optional (default=0.1) - Parameter to control the quality of the embedding according to the Johnson-Lindenstrauss lemma when n_components is set to ‘auto’. - Smaller values lead to better embedding and higher number of dimensions (n_components) in the target projection space. - random_state : integer, RandomState instance or None (default=None) - Control the pseudo random number generator used to generate the matrix at fit time. - Attributes: - n_component_ : int - Concrete number of components computed when n_components=”auto”. - components_ : numpy array of shape [n_components, n_features] - Random matrix used for the projection. - Methods - fit(X[, y])- Generate a sparse random projection matrix - fit_transform(X[, y])- Fit to data, then transform it. - get_params([deep])- Get parameters for this estimator. - set_params(**params)- Set the parameters of this estimator. - transform(X[, y])- Project the data by using matrix product with the random matrix - 
fit(X, y=None)[源代码]¶
- Generate a sparse random projection matrix - Parameters: - X : numpy array or scipy.sparse of shape [n_samples, n_features] - Training set: only the shape is used to find optimal random matrix dimensions based on the theory referenced in the afore mentioned papers. - y : is not used: placeholder to allow for usage in a Pipeline. - Returns: - self : 
 - 
fit_transform(X, y=None, **fit_params)[源代码]¶
- Fit to data, then transform it. - Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X. - Parameters: - X : numpy array of shape [n_samples, n_features] - Training set. - y : numpy array of shape [n_samples] - Target values. - Returns: - X_new : numpy array of shape [n_samples, n_features_new] - Transformed array. 
 - 
get_params(deep=True)[源代码]¶
- Get parameters for this estimator. - Parameters: - deep: boolean, optional : - If True, will return the parameters for this estimator and contained subobjects that are estimators. - Returns: - params : mapping of string to any - Parameter names mapped to their values. 
 - 
set_params(**params)[源代码]¶
- Set the parameters of this estimator. - The method works on simple estimators as well as on nested objects (such as pipelines). The former have parameters of the form - <component>__<parameter>so that it’s possible to update each component of a nested object.- Returns: - self : 
 - 
transform(X, y=None)[源代码]¶
- Project the data by using matrix product with the random matrix - Parameters: - X : numpy array or scipy.sparse of shape [n_samples, n_features] - The input data to project into a smaller dimensional space. - y : is not used: placeholder to allow for usage in a Pipeline. - Returns: - X_new : numpy array or scipy sparse of shape [n_samples, n_components] - Projected array. 
 
- 
 
        