sklearn.svm.NuSVR¶
- 
class sklearn.svm.NuSVR(nu=0.5, C=1.0, kernel='rbf', degree=3, gamma='auto', coef0=0.0, shrinking=True, tol=0.001, cache_size=200, verbose=False, max_iter=-1)[源代码]¶
- Nu Support Vector Regression. - Similar to NuSVC, for regression, uses a parameter nu to control the number of support vectors. However, unlike NuSVC, where nu replaces C, here nu replaces the parameter epsilon of epsilon-SVR. - The implementation is based on libsvm. - Read more in the User Guide. - Parameters: - C : float, optional (default=1.0) - Penalty parameter C of the error term. - nu : float, optional - An upper bound on the fraction of training errors and a lower bound of the fraction of support vectors. Should be in the interval (0, 1]. By default 0.5 will be taken. - kernel : string, optional (default=’rbf’) - Specifies the kernel type to be used in the algorithm. It must be one of ‘linear’, ‘poly’, ‘rbf’, ‘sigmoid’, ‘precomputed’ or a callable. If none is given, ‘rbf’ will be used. If a callable is given it is used to precompute the kernel matrix. - degree : int, optional (default=3) - Degree of the polynomial kernel function (‘poly’). Ignored by all other kernels. - gamma : float, optional (default=’auto’) - Kernel coefficient for ‘rbf’, ‘poly’ and ‘sigmoid’. If gamma is ‘auto’ then 1/n_features will be used instead. - coef0 : float, optional (default=0.0) - Independent term in kernel function. It is only significant in ‘poly’ and ‘sigmoid’. - shrinking : boolean, optional (default=True) - Whether to use the shrinking heuristic. - tol : float, optional (default=1e-3) - Tolerance for stopping criterion. - cache_size : float, optional - Specify the size of the kernel cache (in MB). - verbose : bool, default: False - Enable verbose output. Note that this setting takes advantage of a per-process runtime setting in libsvm that, if enabled, may not work properly in a multithreaded context. - max_iter : int, optional (default=-1) - Hard limit on iterations within solver, or -1 for no limit. - Attributes: - support_ : array-like, shape = [n_SV] - Indices of support vectors. - support_vectors_ : array-like, shape = [nSV, n_features] - Support vectors. - dual_coef_ : array, shape = [1, n_SV] - Coefficients of the support vector in the decision function. - coef_ : array, shape = [1, n_features] - Weights assigned to the features (coefficients in the primal problem). This is only available in the case of a linear kernel. - coef_ is readonly property derived from dual_coef_ and support_vectors_. - intercept_ : array, shape = [1] - Constants in decision function. - 参见 - Examples - >>> from sklearn.svm import NuSVR >>> import numpy as np >>> n_samples, n_features = 10, 5 >>> np.random.seed(0) >>> y = np.random.randn(n_samples) >>> X = np.random.randn(n_samples, n_features) >>> clf = NuSVR(C=1.0, nu=0.1) >>> clf.fit(X, y) NuSVR(C=1.0, cache_size=200, coef0=0.0, degree=3, gamma='auto', kernel='rbf', max_iter=-1, nu=0.1, shrinking=True, tol=0.001, verbose=False) - Methods - decision_function(*args, **kwargs)- DEPRECATED: and will be removed in 0.19 - fit(X, y[, sample_weight])- Fit the SVM model according to the given training data. - get_params([deep])- Get parameters for this estimator. - predict(X)- Perform regression on samples in X. - score(X, y[, sample_weight])- Returns the coefficient of determination R^2 of the prediction. - set_params(**params)- Set the parameters of this estimator. - 
__init__(nu=0.5, C=1.0, kernel='rbf', degree=3, gamma='auto', coef0=0.0, shrinking=True, tol=0.001, cache_size=200, verbose=False, max_iter=-1)[源代码]¶
 - 
decision_function(*args, **kwargs)[源代码]¶
- DEPRECATED: and will be removed in 0.19 - Distance of the samples X to the separating hyperplane. - Parameters: - X : array-like, shape (n_samples, n_features) - For kernel=”precomputed”, the expected shape of X is [n_samples_test, n_samples_train]. - Returns: - X : array-like, shape (n_samples, n_class * (n_class-1) / 2) - Returns the decision function of the sample for each class in the model. 
 - 
fit(X, y, sample_weight=None)[源代码]¶
- Fit the SVM model according to the given training data. - Parameters: - X : {array-like, sparse matrix}, shape (n_samples, n_features) - Training vectors, where n_samples is the number of samples and n_features is the number of features. For kernel=”precomputed”, the expected shape of X is (n_samples, n_samples). - y : array-like, shape (n_samples,) - Target values (class labels in classification, real numbers in regression) - sample_weight : array-like, shape (n_samples,) - Per-sample weights. Rescale C per sample. Higher weights force the classifier to put more emphasis on these points. - Returns: - self : object - Returns self. - Notes - If X and y are not C-ordered and contiguous arrays of np.float64 and X is not a scipy.sparse.csr_matrix, X and/or y may be copied. - If X is a dense array, then the other methods will not support sparse matrices as input. 
 - 
get_params(deep=True)[源代码]¶
- Get parameters for this estimator. - Parameters: - deep: boolean, optional : - If True, will return the parameters for this estimator and contained subobjects that are estimators. - Returns: - params : mapping of string to any - Parameter names mapped to their values. 
 - 
predict(X)[源代码]¶
- Perform regression on samples in X. - For an one-class model, +1 or -1 is returned. - Parameters: - X : {array-like, sparse matrix}, shape (n_samples, n_features) - For kernel=”precomputed”, the expected shape of X is (n_samples_test, n_samples_train). - Returns: - y_pred : array, shape (n_samples,) 
 - 
score(X, y, sample_weight=None)[源代码]¶
- Returns the coefficient of determination R^2 of the prediction. - The coefficient R^2 is defined as (1 - u/v), where u is the regression sum of squares ((y_true - y_pred) ** 2).sum() and v is the residual sum of squares ((y_true - y_true.mean()) ** 2).sum(). Best possible score is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0. - Parameters: - X : array-like, shape = (n_samples, n_features) - Test samples. - y : array-like, shape = (n_samples) or (n_samples, n_outputs) - True values for X. - sample_weight : array-like, shape = [n_samples], optional - Sample weights. - Returns: - score : float - R^2 of self.predict(X) wrt. y. 
 
- 
 
         
