sklearn.cross_validation
.LeavePLabelOut¶
-
class
sklearn.cross_validation.
LeavePLabelOut
(labels, p)[源代码]¶ Leave-P-Label_Out cross-validation iterator
Provides train/test indices to split data according to a third-party provided label. This label information can be used to encode arbitrary domain specific stratifications of the samples as integers.
For instance the labels could be the year of collection of the samples and thus allow for cross-validation against time-based splits.
The difference between LeavePLabelOut and LeaveOneLabelOut is that the former builds the test sets with all the samples assigned to
p
different values of the labels while the latter uses samples all assigned the same labels.Read more in the User Guide.
Parameters: labels : array-like of int with shape (n_samples,)
Arbitrary domain-specific stratification of the data to be used to draw the splits.
p : int
Number of samples to leave out in the test split.
参见
LabelKFold
- K-fold iterator variant with non-overlapping labels.
Examples
>>> from sklearn import cross_validation >>> X = np.array([[1, 2], [3, 4], [5, 6]]) >>> y = np.array([1, 2, 1]) >>> labels = np.array([1, 2, 3]) >>> lpl = cross_validation.LeavePLabelOut(labels, p=2) >>> len(lpl) 3 >>> print(lpl) sklearn.cross_validation.LeavePLabelOut(labels=[1 2 3], p=2) >>> for train_index, test_index in lpl: ... print("TRAIN:", train_index, "TEST:", test_index) ... X_train, X_test = X[train_index], X[test_index] ... y_train, y_test = y[train_index], y[test_index] ... print(X_train, X_test, y_train, y_test) TRAIN: [2] TEST: [0 1] [[5 6]] [[1 2] [3 4]] [1] [1 2] TRAIN: [1] TEST: [0 2] [[3 4]] [[1 2] [5 6]] [2] [1 1] TRAIN: [0] TEST: [1 2] [[1 2]] [[3 4] [5 6]] [1] [2 1] .. automethod:: __init__