sklearn.gaussian_process.correlation_models
.absolute_exponential¶
-
sklearn.gaussian_process.correlation_models.
absolute_exponential
(theta, d)[源代码]¶ Absolute exponential autocorrelation model. (Ornstein-Uhlenbeck stochastic process):
n theta, d --> r(theta, d) = exp( sum - theta_i * |d_i| ) i = 1
Parameters: theta : array_like
An array with shape 1 (isotropic) or n (anisotropic) giving the autocorrelation parameter(s).
d : array_like
An array with shape (n_eval, n_features) giving the componentwise distances between locations x and x’ at which the correlation model should be evaluated.
Returns: r : array_like
An array with shape (n_eval, ) containing the values of the autocorrelation model.