sklearn.linear_model
.LassoLars¶
-
class
sklearn.linear_model.
LassoLars
(alpha=1.0, fit_intercept=True, verbose=False, normalize=True, precompute='auto', max_iter=500, eps=2.2204460492503131e-16, copy_X=True, fit_path=True, positive=False)[源代码]¶ Lasso model fit with Least Angle Regression a.k.a. Lars
It is a Linear Model trained with an L1 prior as regularizer.
The optimization objective for Lasso is:
(1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1
Read more in the User Guide.
Parameters: alpha : float
Constant that multiplies the penalty term. Defaults to 1.0.
alpha = 0
is equivalent to an ordinary least square, solved byLinearRegression
. For numerical reasons, usingalpha = 0
with the LassoLars object is not advised and you should prefer the LinearRegression object.fit_intercept : boolean
whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered).
positive : boolean (default=False)
Restrict coefficients to be >= 0. Be aware that you might want to remove fit_intercept which is set True by default. Under the positive restriction the model coefficients will not converge to the ordinary-least-squares solution for small values of alpha. Only coeffiencts up to the smallest alpha value (
alphas_[alphas_ > 0.].min()
when fit_path=True) reached by the stepwise Lars-Lasso algorithm are typically in congruence with the solution of the coordinate descent Lasso estimator.verbose : boolean or integer, optional
Sets the verbosity amount
normalize : boolean, optional, default False
If True, the regressors X will be normalized before regression.
copy_X : boolean, optional, default True
If True, X will be copied; else, it may be overwritten.
precompute : True | False | ‘auto’ | array-like
Whether to use a precomputed Gram matrix to speed up calculations. If set to
'auto'
let us decide. The Gram matrix can also be passed as argument.max_iter : integer, optional
Maximum number of iterations to perform.
eps : float, optional
The machine-precision regularization in the computation of the Cholesky diagonal factors. Increase this for very ill-conditioned systems. Unlike the
tol
parameter in some iterative optimization-based algorithms, this parameter does not control the tolerance of the optimization.fit_path : boolean
If
True
the full path is stored in thecoef_path_
attribute. If you compute the solution for a large problem or many targets, settingfit_path
toFalse
will lead to a speedup, especially with a small alpha.Attributes: alphas_ : array, shape (n_alphas + 1,) | list of n_targets such arrays
Maximum of covariances (in absolute value) at each iteration.
n_alphas
is eithermax_iter
,n_features
, or the number of nodes in the path with correlation greater thanalpha
, whichever is smaller.active_ : list, length = n_alphas | list of n_targets such lists
Indices of active variables at the end of the path.
coef_path_ : array, shape (n_features, n_alphas + 1) or list
If a list is passed it’s expected to be one of n_targets such arrays. The varying values of the coefficients along the path. It is not present if the
fit_path
parameter isFalse
.coef_ : array, shape (n_features,) or (n_targets, n_features)
Parameter vector (w in the formulation formula).
intercept_ : float | array, shape (n_targets,)
Independent term in decision function.
n_iter_ : array-like or int.
The number of iterations taken by lars_path to find the grid of alphas for each target.
Examples
>>> from sklearn import linear_model >>> clf = linear_model.LassoLars(alpha=0.01) >>> clf.fit([[-1, 1], [0, 0], [1, 1]], [-1, 0, -1]) ... LassoLars(alpha=0.01, copy_X=True, eps=..., fit_intercept=True, fit_path=True, max_iter=500, normalize=True, positive=False, precompute='auto', verbose=False) >>> print(clf.coef_) [ 0. -0.963257...]
Methods
decision_function
(*args, **kwargs)DEPRECATED: and will be removed in 0.19. fit
(X, y[, Xy])Fit the model using X, y as training data. get_params
([deep])Get parameters for this estimator. predict
(X)Predict using the linear model score
(X, y[, sample_weight])Returns the coefficient of determination R^2 of the prediction. set_params
(**params)Set the parameters of this estimator. -
__init__
(alpha=1.0, fit_intercept=True, verbose=False, normalize=True, precompute='auto', max_iter=500, eps=2.2204460492503131e-16, copy_X=True, fit_path=True, positive=False)[源代码]¶
-
decision_function
(*args, **kwargs)[源代码]¶ DEPRECATED: and will be removed in 0.19.
Decision function of the linear model.
Parameters: X : {array-like, sparse matrix}, shape = (n_samples, n_features)
Samples.
Returns: C : array, shape = (n_samples,)
Returns predicted values.
-
fit
(X, y, Xy=None)[源代码]¶ Fit the model using X, y as training data.
Parameters: X : array-like, shape (n_samples, n_features)
Training data.
y : array-like, shape (n_samples,) or (n_samples, n_targets)
Target values.
Xy : array-like, shape (n_samples,) or (n_samples, n_targets), optional
Xy = np.dot(X.T, y) that can be precomputed. It is useful only when the Gram matrix is precomputed.
Returns: self : object
returns an instance of self.
-
get_params
(deep=True)[源代码]¶ Get parameters for this estimator.
Parameters: deep: boolean, optional :
If True, will return the parameters for this estimator and contained subobjects that are estimators.
Returns: params : mapping of string to any
Parameter names mapped to their values.
-
predict
(X)[源代码]¶ Predict using the linear model
Parameters: X : {array-like, sparse matrix}, shape = (n_samples, n_features)
Samples.
Returns: C : array, shape = (n_samples,)
Returns predicted values.
-
score
(X, y, sample_weight=None)[源代码]¶ Returns the coefficient of determination R^2 of the prediction.
The coefficient R^2 is defined as (1 - u/v), where u is the regression sum of squares ((y_true - y_pred) ** 2).sum() and v is the residual sum of squares ((y_true - y_true.mean()) ** 2).sum(). Best possible score is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.
Parameters: X : array-like, shape = (n_samples, n_features)
Test samples.
y : array-like, shape = (n_samples) or (n_samples, n_outputs)
True values for X.
sample_weight : array-like, shape = [n_samples], optional
Sample weights.
Returns: score : float
R^2 of self.predict(X) wrt. y.
-