1. Problem
  2. Evaluation
  3. Dataset
  4. Result
    1. PASCAL VOC 2012 segmentation val
    2. PASCAL VOC 2012 SBD val
    3. Microsoft COCO
  5. Reference

Instance-aware Semantic Segmentation

Problem

The task requires both classification and segmentation of object instances.

Evaluation

Dataset

  • PASCAL VOC 2012 segmentation val subset

    1449 images.

    training data: 10582 training images and annotations are from the train subset and SBD.

  • PASCAL VOC 2012 SDS val subset

    5732 images, the same 5623 training images in the train subset.

  • Microsoft COCO

    80 object classes.

    trainval subset: 80k + 40k images.

Result

PASCAL VOC 2012 segmentation val

IoU threshold 0.6 0.7 0.8 0.9
PFN 51.3 42.5 31.2 15.7
MPA 1-scale 54.6 45.9 34.3 17.3
MPA 3-scale 56.6 47.4 36.1 18.5

PASCAL VOC 2012 SBD val

Method \(mAP^r\)@0.5 (%) \(mAP^r_{vol}\)
SDS 49.7 41.4
Hypercolumn 56.5 -
Hypercolumn-rescore 60.0 -
CFM 60.7 -
MPA 1-scale 55.5 48.3
MPA 3-scale-rescore 61.8 52.0
method \(mAP^r\)@0.5 (%) \(mAP^r\)@0.7 (%)
\(O^2P\) 25.2 -
SDS 49.7 25.3
naive MNC 59.1 36.0
Hypercolumn 56.5 37.0
Hypercolumn-rescore 60.0 40.4
CFM 60.7 39.6
MNC 63.5 41.5
InstFCN + MNC 61.5 43.0
InstFCN + R-FCN 62.7 41.5
FCIS (translation invariant) 52.5 38.5
FCIS (separate score maps) 63.9 49.7
FCIS 65.7 52.1

Microsoft COCO

Method backbone \(mAP^r\)@[0.5:0.95] (%) \(mAP^r\)@0.5 (%)
MNC VGG-16 19.5 39.7
MNC ResNet-101-C4 24.6 44.3
FAIRCNN (2015) 25.0 45.6
MNC+++ (2015) 28.4 51.6
G-RMI (2016) 33.8 56.9
FCIS baseline ResNet-101-C5-dilated 29.2 49.5
+multi-scale testing ResNet-101-C5-dilated 32.0 51.9
+horizontal flip ResNet-101-C5-dilated 32.7 52.7
+multi-scale training ResNet-101-C5-dilated 33.6 54.5
+ensemble ResNet-101-C5-dilated 37.6 59.9
Mask R-CNN ResNet-101-C4 33.1 54.9
Mask R-CNN ResNet-101-FPN 35.7 58.0
Mask R-CNN ResNeXt-101-FPN 37.1 60.0

Reference

Method Year Conference Reference Paper
SDS 2014 ECCV Simultaneous Detection and Segmentation
Hypercolumn 2015 CVPR Hypercolumns for Object Segmentation and Fine-grained Localization
CFM 2015 CVPR Convolutional Feature Masking for Joint Object and Stuff Segmentation
MNC 2016 CVPR Instance-aware Semantic Segmentation via Multi-task Network Cascades
MPA-SDS 2016 CVPR Multi-scale Patch Aggregation (MPA) for Simultaneous Detection and Segmentation
InstFCN 2016 ECCV Instance-sensitive Fully Convolutional Networks
FCIS 2017 CVPR Fully Convolutional Instance-aware Semantic Segmentation
Mask R-CNN 2017 ICCV Mask R-CNN