TT100K
(CVPR 2016) Traffic-Sign Detection and Classification in the Wild
Page: https://cg.cs.tsinghua.edu.cn/traffic-sign/
Code: http://cg.cs.tsinghua.edu.cn/traffic-sign/data_model_code/code.zip
我们做了两个贡献:
我们从 10 万张腾讯街景全景图中创建了一个大型交通标志基准,超越了之前的基准。 它提供包含 30000 个交通标志实例的 100000 张图像。 这些图像涵盖了照度和天气条件的巨大变化。基准测试中的每个交通标志都标注了类别标签、边界框和像素掩码。 我们将此基准称为 Tsinghua-Tencent 100K。
我们演示了一个强大的端到端卷积神经网络(CNN)如何同时检测和分类交通标志。大多数先前的 CNN 图像处理解决方案针对占据图像的大部分的对象,并且这种网络不能很好地用于仅占据图像的一小部分的目标对象,比如这里的交通标志。实验结果表明了我们网络的稳健性及其对替代方案的优越性。
We make two contributions:
we have created a large traffic-sign benchmark from 100000 Tencent Street View panoramas, going beyond previous benchmarks. It provides 100000 images containing 30000 traffic-sign instances. These images cover large variations in illuminance and weather conditions. Each traffic-sign in the benchmark is annotated with a class label, its bounding box and pixel mask. We call this benchmark Tsinghua-Tencent 100K.
we demonstrate how a robust end-to-end convolutional neural network (CNN) can simultaneously detect and classify traffic-signs. Most previous CNN image processing solutions target objects that occupy a large proportion of an image, and such networks do not work well for target objects occupying only a small fraction of an image like the traffic-signs here. Experimental results show the robustness of our network and its superiority to alternatives.
中文
简介
实验
相关工作和讨论
结论
English
Introduction
Related work
Traffic Sign Classification
Object Detection by CNNs
Benchmark
Data Collection
Data Annotation
Dataset Statistics
Neural Network
Architecture
Training
Results
Detection
Simultaneous detection and classification
Conclusions
数据分析 Data Analysis
num_classes: 222 (0 background + 221 traffic signs)
1 i1 | 2 i2 | 3 i3 | 4 i4 | 5 i5 | 6 i6 | 7 i7 | 8 i8 | 9 i9 | 10 i10 |
11 i11 | 12 i12 | 13 i13 | 14 i14 | 15 i15 | 16 il50 | 17 il60 | 18 il70 | 19 il80 | 20 il90 |
21 il100 | 22 il110 | 23 ilx | 24 io | 25 ip | 26 p1 | 27 p2 | 28 p3 | 29 p4 | 30 p5 |
31 p6 | 32 p7 | 33 p8 | 34 p9 | 35 p10 | 36 p11 | 37 p12 | 38 p13 | 39 p14 | 40 p15 |
41 p16 | 42 p17 | 43 p18 | 44 p19 | 45 p20 | 46 p21 | 47 p22 | 48 p23 | 49 p24 | 50 p25 |
51 p26 | 52 p27 | 53 p28 | 54 p29 | 55 pa8 | 56 pa10 | 57 pa12 | 58 pa13 | 59 pa14 | 60 pax |
61 pb | 62 pc | 63 pd | 64 pe | 65 pg | 66 ph1.5 | 67 ph2 | 68 ph2.1 | 69 ph2.2 | 70 ph2.4 |
71 ph2.5 | 72 ph2.6 | 73 ph2.8 | 74 ph2.9 | 75 ph3 | 76 ph3.2 | 77 ph3.3 | 78 ph3.5 | 79 ph3.8 | 80 ph4 |
81 ph4.2 | 82 ph4.3 | 83 ph4.4 | 84 ph4.5 | 85 ph4.8 | 86 ph5 | 87 ph5.3 | 88 ph5.5 | 89 phx | 90 pl0 |
91 pl3 | 92 pl4 | 93 pl5 | 94 pl10 | 95 pl15 | 96 pl20 | 97 pl25 | 98 pl30 | 99 pl35 | 100 pl40 |
101 pl50 | 102 pl60 | 103 pl65 | 104 pl70 | 105 pl80 | 106 pl90 | 107 pl100 | 108 pl110 | 109 pl120 | 110 plx |
111 pm1.5 | 112 pm2 | 113 pm2.5 | 114 pm5 | 115 pm8 | 116 pm10 | 117 pm13 | 118 pm15 | 119 pm20 | 120 pm25 |
121 pm30 | 122 pm35 | 123 pm40 | 124 pm46 | 125 pm50 | 126 pm55 | 127 pmx | 128 pn | 129 pn40 | 130 pne |
131 pnl | 132 po | 133 pr10 | 134 pr20 | 135 pr30 | 136 pr40 | 137 pr45 | 138 pr50 | 139 pr60 | 140 pr70 |
141 pr80 | 142 pr100 | 143 prx | 144 ps | 145 pw2 | 146 pw2.5 | 147 pw3 | 148 pw3.2 | 149 pw3.5 | 150 pw4 |
151 pw4.2 | 152 pw4.5 | 153 pwx | 154 w1 | 155 w2 | 156 w3 | 157 w4 | 158 w5 | 159 w6 | 160 w7 |
161 w8 | 162 w9 | 163 w10 | 164 w11 | 165 w12 | 166 w13 | 167 w14 | 168 w15 | 169 w16 | 170 w17 |
171 w18 | 172 w19 | 173 w20 | 174 w21 | 175 w22 | 176 w23 | 177 w24 | 178 w25 | 179 w26 | 180 w27 |
181 w28 | 182 w29 | 183 w30 | 184 w31 | 185 w32 | 186 w33 | 187 w34 | 188 w35 | 189 w36 | 190 w37 |
191 w38 | 192 w39 | 193 w40 | 194 w41 | 195 w42 | 196 w43 | 197 w44 | 198 w45 | 199 w46 | 200 w47 |
201 w48 | 202 w49 | 203 w50 | 204 w51 | 205 w52 | 206 w53 | 207 w54 | 208 w55 | 209 w56 | 210 w57 |
211 w58 | 212 w59 | 213 w60 | 214 w61 | 215 w62 | 216 w63 | 217 w64 | 218 w65 | 219 w66 | 220 w67 |
221 wo |
train
train: 7196 samples (train 6105 samples + other 7641 samples - 6550 negative samples)
7196 images, 18159 bboxes
count_images_for_bbox:
count_bbox | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
count_images | 2745 | 1922 | 958 | 568 | 441 | 234 | 83 | 85 | 104 | 21 | 13 | 21 | 1 |
count_bbox_min_size:
bbox_min_size | 0 | 20 | 40 | 60 | 80 | 100 | 120 | 140 | 160 | 180 | 200 | 220 | 240 | 260 | 280 | 360 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
count | 144 | 7737 | 5079 | 2531 | 1385 | 673 | 312 | 144 | 86 | 35 | 18 | 11 | 1 | 1 | 1 | 1 |
average bbox_min_size: 42.3916876326
count_bbox_height_width_ratio:
bbox_height_width_ratio | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
---|---|---|---|---|---|---|---|---|
count | 5 | 16655 | 1353 | 116 | 19 | 9 | 1 | 1 |
average bbox_height_width_ratio: 1.14734565069
count_images_for_category_id:
category_id | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
count_images | 6 | 292 | 6 | 474 | 1077 | 0 | 0 | 0 | 0 | 54 | 1 | 12 | 13 | 4 | 3 | 15 | 254 | 9 | 176 | 57 |
category_id | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 |
count_images | 93 | 19 | 0 | 371 | 172 | 55 | 11 | 112 | 2 | 269 | 69 | 1 | 9 | 47 | 235 | 978 | 111 | 4 | 29 | 4 |
category_id | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 |
count_images | 14 | 23 | 28 | 89 | 2 | 2 | 31 | 162 | 1 | 37 | 485 | 84 | 2 | 0 | 1 | 11 | 2 | 14 | 47 | 0 |
category_id | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 |
count_images | 47 | 2 | 0 | 0 | 104 | 2 | 10 | 1 | 7 | 2 | 6 | 3 | 15 | 2 | 12 | 1 | 20 | 5 | 0 | 80 |
category_id | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 |
count_images | 21 | 4 | 1 | 112 | 8 | 66 | 4 | 1 | 0 | 3 | 0 | 1 | 223 | 23 | 72 | 97 | 6 | 383 | 20 | 880 |
category_id | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 120 |
count_images | 681 | 518 | 1 | 100 | 542 | 44 | 269 | 39 | 159 | 0 | 2 | 5 | 0 | 13 | 8 | 47 | 2 | 25 | 105 | 9 |
category_id | 121 | 122 | 123 | 124 | 125 | 126 | 127 | 128 | 129 | 130 | 131 | 132 | 133 | 134 | 135 | 136 | 137 | 138 | 139 | 140 |
count_images | 72 | 4 | 7 | 6 | 9 | 95 | 0 | 1934 | 1 | 1415 | 0 | 549 | 1 | 27 | 47 | 136 | 0 | 30 | 42 | 16 |
category_id | 141 | 142 | 143 | 144 | 145 | 146 | 147 | 148 | 149 | 150 | 151 | 152 | 153 | 154 | 155 | 156 | 157 | 158 | 159 | 160 |
count_images | 9 | 2 | 0 | 62 | 1 | 1 | 3 | 4 | 1 | 4 | 1 | 3 | 0 | 1 | 0 | 11 | 0 | 1 | 0 | 0 |
category_id | 161 | 162 | 163 | 164 | 165 | 166 | 167 | 168 | 169 | 170 | 171 | 172 | 173 | 174 | 175 | 176 | 177 | 178 | 179 | 180 |
count_images | 7 | 0 | 4 | 0 | 1 | 98 | 0 | 20 | 32 | 0 | 10 | 0 | 11 | 46 | 46 | 0 | 12 | 0 | 9 | 0 |
category_id | 181 | 182 | 183 | 184 | 185 | 186 | 187 | 188 | 189 | 190 | 191 | 192 | 193 | 194 | 195 | 196 | 197 | 198 | 199 | 200 |
count_images | 0 | 0 | 72 | 3 | 66 | 0 | 12 | 2 | 0 | 4 | 3 | 0 | 0 | 7 | 26 | 6 | 1 | 16 | 5 | 35 |
category_id | 201 | 202 | 203 | 204 | 205 | 206 | 207 | 208 | 209 | 210 | 211 | 212 | 213 | 214 | 215 | 216 | 217 | 218 | 219 | 220 |
count_images | 1 | 1 | 3 | 0 | 0 | 0 | 0 | 109 | 0 | 252 | 49 | 124 | 1 | 0 | 1 | 73 | 0 | 0 | 4 | 0 |
category_id | 221 | |||||||||||||||||||
count_images | 60 |
avg 75.1990950226 max 1934 (1) min 0 (46)
test
test: 3071 samples
3071 images, 8190 bboxes
count_images_for_bbox:
count_bbox | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 18 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
count_images | 1042 | 844 | 407 | 278 | 236 | 111 | 53 | 39 | 42 | 6 | 4 | 6 | 2 | 1 |
count_bbox_min_size:
bbox_min_size | 0 | 20 | 40 | 60 | 80 | 100 | 120 | 140 | 160 | 180 | 200 | 220 | 240 | 260 | 300 | 320 | 340 | 400 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
count | 16 | 3440 | 2459 | 1107 | 561 | 306 | 139 | 77 | 44 | 23 | 7 | 2 | 2 | 2 | 2 | 1 | 1 | 1 |
average bbox_min_size: 42.8355321502
count_bbox_height_width_ratio:
bbox_height_width_ratio | 0 | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|---|
count | 8 | 7402 | 699 | 69 | 10 | 2 |
average bbox_height_width_ratio: 1.15697810748
count_images_for_category_id:
category_id | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
count_images | 1 | 140 | 2 | 223 | 461 | 0 | 0 | 0 | 0 | 15 | 2 | 1 | 4 | 1 | 3 | 3 | 103 | 5 | 84 | 17 |
category_id | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 |
count_images | 39 | 2 | 0 | 175 | 114 | 15 | 5 | 58 | 2 | 117 | 39 | 0 | 4 | 14 | 86 | 491 | 66 | 2 | 13 | 1 |
category_id | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 |
count_images | 6 | 9 | 12 | 33 | 0 | 0 | 8 | 99 | 0 | 12 | 230 | 47 | 1 | 0 | 0 | 0 | 0 | 11 | 13 | 0 |
category_id | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 |
count_images | 18 | 0 | 0 | 0 | 44 | 0 | 2 | 0 | 5 | 1 | 2 | 0 | 0 | 0 | 4 | 1 | 0 | 4 | 1 | 36 |
category_id | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 |
count_images | 8 | 2 | 0 | 55 | 3 | 30 | 0 | 1 | 0 | 0 | 1 | 0 | 130 | 12 | 17 | 55 | 2 | 202 | 1 | 432 |
category_id | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 120 |
count_images | 338 | 262 | 0 | 44 | 259 | 3 | 124 | 3 | 79 | 0 | 0 | 2 | 1 | 2 | 1 | 1 | 0 | 5 | 47 | 0 |
category_id | 121 | 122 | 123 | 124 | 125 | 126 | 127 | 128 | 129 | 130 | 131 | 132 | 133 | 134 | 135 | 136 | 137 | 138 | 139 | 140 |
count_images | 31 | 1 | 1 | 0 | 2 | 37 | 0 | 913 | 0 | 615 | 0 | 282 | 0 | 5 | 2 | 63 | 2 | 6 | 10 | 2 |
category_id | 141 | 142 | 143 | 144 | 145 | 146 | 147 | 148 | 149 | 150 | 151 | 152 | 153 | 154 | 155 | 156 | 157 | 158 | 159 | 160 |
count_images | 2 | 0 | 0 | 13 | 0 | 0 | 1 | 7 | 1 | 3 | 0 | 0 | 0 | 0 | 1 | 5 | 0 | 0 | 0 | 0 |
category_id | 161 | 162 | 163 | 164 | 165 | 166 | 167 | 168 | 169 | 170 | 171 | 172 | 173 | 174 | 175 | 176 | 177 | 178 | 179 | 180 |
count_images | 0 | 0 | 0 | 0 | 1 | 31 | 0 | 2 | 3 | 0 | 3 | 0 | 3 | 9 | 14 | 0 | 3 | 0 | 0 | 0 |
category_id | 181 | 182 | 183 | 184 | 185 | 186 | 187 | 188 | 189 | 190 | 191 | 192 | 193 | 194 | 195 | 196 | 197 | 198 | 199 | 200 |
count_images | 1 | 0 | 20 | 0 | 33 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 4 | 3 | 7 |
category_id | 201 | 202 | 203 | 204 | 205 | 206 | 207 | 208 | 209 | 210 | 211 | 212 | 213 | 214 | 215 | 216 | 217 | 218 | 219 | 220 |
count_images | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 59 | 1 | 115 | 19 | 60 | 0 | 0 | 0 | 13 | 0 | 0 | 0 | 0 |
category_id | 221 | |||||||||||||||||||
count_images | 34 |
avg 33.8280542986 max 913 (1) min 0 (85)