Label Propagation digits active learning

Demonstrates an active learning technique to learn handwritten digits using label propagation.

We start by training a label propagation model with only 10 labeled points, then we select the top five most uncertain points to label. Next, we train with 15 labeled points (original 10 + 5 new ones). We repeat this process four times to have a model trained with 30 labeled examples.

A plot will appear showing the top 5 most uncertain digits for each iteration of training. These may or may not contain mistakes, but we will train the next model with their true labels.

../../_images/plot_label_propagation_digits_active_learning_001.png

Script output:

Iteration 0 ______________________________________________________________________
Label Spreading model: 10 labeled & 320 unlabeled (330 total)
             precision    recall  f1-score   support

          0       0.00      0.00      0.00        24
          1       0.49      0.90      0.63        29
          2       0.88      0.97      0.92        31
          3       0.00      0.00      0.00        28
          4       0.00      0.00      0.00        27
          5       0.89      0.49      0.63        35
          6       0.86      0.95      0.90        40
          7       0.75      0.92      0.83        36
          8       0.54      0.79      0.64        33
          9       0.41      0.86      0.56        37

avg / total       0.52      0.63      0.55       320

Confusion matrix
[[26  1  0  0  1  0  1]
 [ 1 30  0  0  0  0  0]
 [ 0  0 17  6  0  2 10]
 [ 2  0  0 38  0  0  0]
 [ 0  3  0  0 33  0  0]
 [ 7  0  0  0  0 26  0]
 [ 0  0  2  0  0  3 32]]
Iteration 1 ______________________________________________________________________
Label Spreading model: 15 labeled & 315 unlabeled (330 total)
             precision    recall  f1-score   support

          0       1.00      1.00      1.00        23
          1       0.61      0.59      0.60        29
          2       0.91      0.97      0.94        31
          3       1.00      0.56      0.71        27
          4       0.79      0.88      0.84        26
          5       0.89      0.46      0.60        35
          6       0.86      0.95      0.90        40
          7       0.97      0.92      0.94        36
          8       0.54      0.84      0.66        31
          9       0.70      0.81      0.75        37

avg / total       0.82      0.80      0.79       315

Confusion matrix
[[23  0  0  0  0  0  0  0  0  0]
 [ 0 17  1  0  2  0  0  1  7  1]
 [ 0  1 30  0  0  0  0  0  0  0]
 [ 0  0  0 15  0  0  0  0 10  2]
 [ 0  3  0  0 23  0  0  0  0  0]
 [ 0  0  0  0  1 16  6  0  2 10]
 [ 0  2  0  0  0  0 38  0  0  0]
 [ 0  0  2  0  1  0  0 33  0  0]
 [ 0  5  0  0  0  0  0  0 26  0]
 [ 0  0  0  0  2  2  0  0  3 30]]
Iteration 2 ______________________________________________________________________
Label Spreading model: 20 labeled & 310 unlabeled (330 total)
             precision    recall  f1-score   support

          0       1.00      1.00      1.00        23
          1       0.68      0.59      0.63        29
          2       0.91      0.97      0.94        31
          3       0.96      1.00      0.98        23
          4       0.81      1.00      0.89        25
          5       0.89      0.46      0.60        35
          6       0.86      0.95      0.90        40
          7       0.97      0.92      0.94        36
          8       0.68      0.84      0.75        31
          9       0.75      0.81      0.78        37

avg / total       0.85      0.84      0.83       310

Confusion matrix
[[23  0  0  0  0  0  0  0  0  0]
 [ 0 17  1  0  2  0  0  1  7  1]
 [ 0  1 30  0  0  0  0  0  0  0]
 [ 0  0  0 23  0  0  0  0  0  0]
 [ 0  0  0  0 25  0  0  0  0  0]
 [ 0  0  0  1  1 16  6  0  2  9]
 [ 0  2  0  0  0  0 38  0  0  0]
 [ 0  0  2  0  1  0  0 33  0  0]
 [ 0  5  0  0  0  0  0  0 26  0]
 [ 0  0  0  0  2  2  0  0  3 30]]
Iteration 3 ______________________________________________________________________
Label Spreading model: 25 labeled & 305 unlabeled (330 total)
             precision    recall  f1-score   support

          0       1.00      1.00      1.00        23
          1       0.70      0.85      0.77        27
          2       1.00      0.90      0.95        31
          3       1.00      1.00      1.00        23
          4       1.00      1.00      1.00        25
          5       0.96      0.74      0.83        34
          6       1.00      0.95      0.97        40
          7       0.90      1.00      0.95        35
          8       0.83      0.81      0.82        31
          9       0.75      0.83      0.79        36

avg / total       0.91      0.90      0.90       305

Confusion matrix
[[23  0  0  0  0  0  0  0  0  0]
 [ 0 23  0  0  0  0  0  0  4  0]
 [ 0  1 28  0  0  0  0  2  0  0]
 [ 0  0  0 23  0  0  0  0  0  0]
 [ 0  0  0  0 25  0  0  0  0  0]
 [ 0  0  0  0  0 25  0  0  0  9]
 [ 0  2  0  0  0  0 38  0  0  0]
 [ 0  0  0  0  0  0  0 35  0  0]
 [ 0  5  0  0  0  0  0  0 25  1]
 [ 0  2  0  0  0  1  0  2  1 30]]
Iteration 4 ______________________________________________________________________
Label Spreading model: 30 labeled & 300 unlabeled (330 total)
             precision    recall  f1-score   support

          0       1.00      1.00      1.00        23
          1       0.77      0.88      0.82        26
          2       1.00      0.90      0.95        31
          3       1.00      1.00      1.00        23
          4       1.00      1.00      1.00        25
          5       0.94      0.97      0.95        32
          6       1.00      0.97      0.99        39
          7       0.90      1.00      0.95        35
          8       0.89      0.81      0.85        31
          9       0.94      0.89      0.91        35

avg / total       0.94      0.94      0.94       300

Confusion matrix
[[23  0  0  0  0  0  0  0  0  0]
 [ 0 23  0  0  0  0  0  0  3  0]
 [ 0  1 28  0  0  0  0  2  0  0]
 [ 0  0  0 23  0  0  0  0  0  0]
 [ 0  0  0  0 25  0  0  0  0  0]
 [ 0  0  0  0  0 31  0  0  0  1]
 [ 0  1  0  0  0  0 38  0  0  0]
 [ 0  0  0  0  0  0  0 35  0  0]
 [ 0  5  0  0  0  0  0  0 25  1]
 [ 0  0  0  0  0  2  0  2  0 31]]

Python source code: plot_label_propagation_digits_active_learning.py

print(__doc__)

# Authors: Clay Woolam <clay@woolam.org>
# Licence: BSD

import numpy as np
import matplotlib.pyplot as plt
from scipy import stats

from sklearn import datasets
from sklearn.semi_supervised import label_propagation
from sklearn.metrics import classification_report, confusion_matrix

digits = datasets.load_digits()
rng = np.random.RandomState(0)
indices = np.arange(len(digits.data))
rng.shuffle(indices)

X = digits.data[indices[:330]]
y = digits.target[indices[:330]]
images = digits.images[indices[:330]]

n_total_samples = len(y)
n_labeled_points = 10

unlabeled_indices = np.arange(n_total_samples)[n_labeled_points:]
f = plt.figure()

for i in range(5):
    y_train = np.copy(y)
    y_train[unlabeled_indices] = -1

    lp_model = label_propagation.LabelSpreading(gamma=0.25, max_iter=5)
    lp_model.fit(X, y_train)

    predicted_labels = lp_model.transduction_[unlabeled_indices]
    true_labels = y[unlabeled_indices]

    cm = confusion_matrix(true_labels, predicted_labels,
                          labels=lp_model.classes_)

    print('Iteration %i %s' % (i, 70 * '_'))
    print("Label Spreading model: %d labeled & %d unlabeled (%d total)"
          % (n_labeled_points, n_total_samples - n_labeled_points, n_total_samples))

    print(classification_report(true_labels, predicted_labels))

    print("Confusion matrix")
    print(cm)

    # compute the entropies of transduced label distributions
    pred_entropies = stats.distributions.entropy(
        lp_model.label_distributions_.T)

    # select five digit examples that the classifier is most uncertain about
    uncertainty_index = uncertainty_index = np.argsort(pred_entropies)[-5:]

    # keep track of indices that we get labels for
    delete_indices = np.array([])

    f.text(.05, (1 - (i + 1) * .183),
           "model %d\n\nfit with\n%d labels" % ((i + 1), i * 5 + 10), size=10)
    for index, image_index in enumerate(uncertainty_index):
        image = images[image_index]

        sub = f.add_subplot(5, 5, index + 1 + (5 * i))
        sub.imshow(image, cmap=plt.cm.gray_r)
        sub.set_title('predict: %i\ntrue: %i' % (
            lp_model.transduction_[image_index], y[image_index]), size=10)
        sub.axis('off')

        # labeling 5 points, remote from labeled set
        delete_index, = np.where(unlabeled_indices == image_index)
        delete_indices = np.concatenate((delete_indices, delete_index))

    unlabeled_indices = np.delete(unlabeled_indices, delete_indices)
    n_labeled_points += 5

f.suptitle("Active learning with Label Propagation.\nRows show 5 most "
           "uncertain labels to learn with the next model.")
plt.subplots_adjust(0.12, 0.03, 0.9, 0.8, 0.2, 0.45)
plt.show()

Total running time of the example: 3.41 seconds ( 0 minutes 3.41 seconds)