sklearn.metrics.classification_report

sklearn.metrics.classification_report(y_true, y_pred, labels=None, target_names=None, sample_weight=None, digits=2)[源代码]

Build a text report showing the main classification metrics

Read more in the User Guide.

Parameters:

y_true : 1d array-like, or label indicator array / sparse matrix

Ground truth (correct) target values.

y_pred : 1d array-like, or label indicator array / sparse matrix

Estimated targets as returned by a classifier.

labels : array, shape = [n_labels]

Optional list of label indices to include in the report.

target_names : list of strings

Optional display names matching the labels (same order).

sample_weight : array-like of shape = [n_samples], optional

Sample weights.

digits : int

Number of digits for formatting output floating point values

Returns:

report : string

Text summary of the precision, recall, F1 score for each class.

Examples

>>> from sklearn.metrics import classification_report
>>> y_true = [0, 1, 2, 2, 2]
>>> y_pred = [0, 0, 2, 2, 1]
>>> target_names = ['class 0', 'class 1', 'class 2']
>>> print(classification_report(y_true, y_pred, target_names=target_names))
             precision    recall  f1-score   support

    class 0       0.50      1.00      0.67         1
    class 1       0.00      0.00      0.00         1
    class 2       1.00      0.67      0.80         3

avg / total       0.70      0.60      0.61         5