(CVPR 2016) Traffic-Sign Detection and Classification in the Wild
Page: https://cg.cs.tsinghua.edu.cn/traffic-sign/
Code: http://cg.cs.tsinghua.edu.cn/traffic-sign/data_model_code/code.zip
Continue reading(CVPR 2016) Traffic-Sign Detection and Classification in the Wild
Page: https://cg.cs.tsinghua.edu.cn/traffic-sign/
Code: http://cg.cs.tsinghua.edu.cn/traffic-sign/data_model_code/code.zip
Continue reading(ICML 2018) Efficient Neural Architecture Search via Parameter Sharing
Paper: https://arxiv.org/abs/1802.03268
Code: https://github.com/melodyguan/enas
Continue reading(CVPR 2018) Learning Transferable Architectures for Scalable Image Recognition
Paper: https://arxiv.org/abs/1707.07012
Page: https://ai.googleblog.com/2017/11/automl-for-large-scale-image.html
Code: https://github.com/tensorflow/models/tree/master/research/slim/nets/nasnet
Continue reading(ICLR 2017) Neural Architecture Search with Reinforcement Learning
Paper: https://arxiv.org/abs/1611.01578
Page: https://ai.googleblog.com/2017/05/using-machine-learning-to-explore.html
Continue readingDuReader: a Chinese Machine Reading Comprehension Dataset from Real-world Applications
Paper: https://arxiv.org/abs/1711.05073
Page: http://ai.baidu.com/broad/subordinate?dataset=dureader
Code: https://github.com/baidu/DuReader/
Continue readingEncoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation
Paper: https://arxiv.org/abs/1802.02611
Blog: https://research.googleblog.com/2018/03/semantic-image-segmentation-with.html
Code: https://github.com/tensorflow/models/tree/master/research/deeplab
Continue readingRethinking Atrous Convolution for Semantic Image Segmentation
Paper: https://arxiv.org/abs/1706.05587
ICNet for Real-Time Semantic Segmentation on High-Resolution Images
Paper: https://arxiv.org/abs/1704.08545
Code: https://github.com/hszhao/ICNet
ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation
Paper: https://arxiv.org/abs/1606.02147
Code: https://github.com/e-lab/ENet-training
(CVPR 2017) Simple Does It: Weakly Supervised Instance and Semantic Segmentation
Paper: https://arxiv.org/abs/1603.07485
Project Page: https://www.mpi-inf.mpg.de/departments/computer-vision-and-multimodal-computing/research/weakly-supervised-learning/simple-does-it-weakly-supervised-instance-and-semantic-segmentation/